special

This webpage has been robot translated, sorry for typos if any. To view the original content of the page, simply replace the translation subdomain with www in the address bar or use this link.


ИЗОБРЕТЕНИЕ
Патент Российской Федерации RU2242825

ЛИТИЕВЫЙ ( Li/SO2 ) АККУМУЛЯТОР

ЛИТИЕВЫЙ ( Li/SO2 ) АККУМУЛЯТОР

Имя изобретателя: Плешаков М.С. (RU); Белоненко С.А. (RU); Ялюшев Н.И. (RU)
Имя патентообладателя: ООО Инженерная фирма "Орион ХИТ"
Адрес для переписки: 346410, Ростовская обл., г. Новочеркасск, ул. Маяковского, 32, Инженерная фирма "Орион ХИТ", М.С. Плешакову
Дата начала действия патента: 2242825

Изобретение относится к электротехнической промышленности и может быть использовано при изготовлении Li/SO2аккумулятора.

Техническим результатом изобретения является повышение взрывобезопасности Li/SO2 аккумулятора, увеличения его ресурса, и подавления процесса дендритообразования на поверхности литиевого электрода. Согласно изобретению на поверхность сепаратора, обращенную к аноду, наносят разделительный слой толщиной 40-60 мкм, который состоит из 90-95 мас.% графита и коллоидного раствора фторопласта - 5-10 мас.%, по сухому остатку.

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Изобретение относится к электротехнической промышленности и может быть использовано при изготовлении Li/SО2аккумулятора.

Известно изобретение (Литиевый аккумулятор. Getter electrode and improved electrochemical cell containing the same: Пат. 5006428 США, МКИ5 Н 01 М 2/16/Gocbel Franz. Hossain Sohrab; Yardney Technical Product, Inc. - №442033; Заявл. 23.11.89; Опубл. 9.4.91; НКИ 429/101) для предотвращения повреждения аккумулятора с литиевым анодом, из-за роста дендритов при заряде и перезаряде (0,9 М LiAlCL4 в тионилхлориде) предлагается использовать геттерный электрод, помещаемый между катодом и анодом и изолированный от этих электродов стекловойлочными сепараторами. Геттерный электрод выполнен из стекловойлочной бумаги с тонким слоем смеси угля с графитом и работает как катод с относительно низкой плотностью тока. Достигающие геттерный электрод дендриты растворяются, срок службы литиевого аккумулятора существенно увеличивается и сохраняется его емкость.

Однако исследования показали, что использование, описанного в заявке, геттерного электрода в литиевых аккумуляторах, приводит к их существенному саморазряду и потере аккумуляторами емкости.

Известен литиевый аккумулятор (прототип), в котором поверхность анода обработана электронно-проводящим дисперсным углеродистым покрытием, которое не только способствует образованию стабильно пассивирующего слоя и подавляет возникновение дендритов, но и снижает межфазное сопротивление, поддерживая его на этом уровне в течение всего срока службы аккумулятора. (Дисперсная поверхность электрода в литиевом аккумуляторе. Particulate interface for electrolytic cells and electrolytic process: Пат. 5503946, МКИ Н 04 М 4/62/ Fauteux Denis G., Shi Jic, Gary Richard; Arthur D. Little, Inc. №314878; Заявл. 29.09.1994; Опубл. 2.04.1996; НКИ 429/50).

Однако использование описанного в патенте анода с таким покрытием не приводит к образованию стабильно пассивирующего слоя и не подавляет процесс образования дендритов в той степени, которая бы удовлетворяла требованиям, предъявляемым к литиевым аккумуляторам. Проведенные исследования показали, что покрытие того состава, который приводится в патенте, отличается недолговечностью. Происходило отслаивание углеродного покрытия от поверхности литиевого электрода, а дендриты, образовавшиеся на открывшейся поверхности лития, окончательно разрушили нанесенный слой углеродного материала. Дендриты разрушали сепаратор, происходило короткое замыкание, и макеты аккумуляторов разрушались взрывом.

Перед авторами стояла задача повышения взрывобезопасности Li/SО2аккумулятора, увеличения его ресурса, путем образования стабильного пассивирующего слоя и подавления процесса дендритообразования на поверхности литиевого электрода.

Эта задача решена тем, что, на поверхность сепаратора, обращенную к аноду, нанесен разделительный слой толщиной 40-60 мкм, состоящий из графита 90-95 мас.% и коллоидного раствора фторопласта 5-10 мас.%, по сухому остатку.

Сущность изобретения заключается в том, что дендриты, образующиеся на поверхности литиевого электрода, оказываются накоротко замкнутыми на разделительный слой, который нанесен на поверхность сепаратора, обращенную к литиевому электроду. В результате этого взаимодействия на поверхности литиевого электрода образуется стабильный пассивирующий слой, который препятствует процессу дендритообразования. Введенное в состав разделительного слоя связующее (коллоидный раствор фторопласта) прочно удерживает его на поверхности сепаратора и придает ему хорошие пластичные свойства. Толщина 40-60 мкм обусловлена прочностными характеристиками разделительного слоя. При толщине менее 40 мкм, разделительный слой не обладает требуемыми прочностными характеристиками и не выполняет свои функции на весь период работы аккумулятора. Толщина разделительного слоя более 60 мкмнецелесообразна, т.к. это приводит к утолщению блока электродов и не дает положительного эффекта более того, который был получен при толщине разделительного слоя в 60 мкм. При воздействии на разделительный слой дендритов в начальный момент циклирования и увеличения-уменьшения толщины блока электродов (эффект “дыхания”) при последующем циклировании никак не сказываются на разделительном слое, он не трескается и не отслаивается с поверхности сепаратора и выполняет свои функции в течение всего срока службы аккумулятора.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Для изготовления разделительного слоя использовали коллоидный графит марки С-1 и коллоидный раствор фторопласта (водно-спиртовая фторопластовая суспензия) марки Ф4-Д, сепаратор марки БСХИТ. Приготовили раствор графита в водно-спиртовой фторопластовой суспензии в соотношении: графита 90-95 мас.%, и водно-спиртовой фторопластовой суспензии - 5-10 мас.% по сухому остатку. Раствор наносили методом пульверизации на поверхность не отожженного сепаратора до образования слоя толщиной 40-60 мкм. Сепараторы высушивались при температуре 100±5° С, в течение 1 часа, и отжигались при температуре 280-300° С в течение 5-10 минут.

Пример
Для испытаний было собрано 4 серии лабораторных образцов аккумуляторов типоразмера R6 (по 3 штуки в каждой серии) с литиевым и сажевым электродами, двухслойным сепаратором БСХИТ и электролитом Li-AlCl4 ·nSO2 (n равно от 3 до 9).

Испытания проводили на автоматическом зарядно-разрядном стенде. Плотность тока заряда и разряда 1 мА/см2.

Результаты испытаний макетов аккумуляторов в зависимости от количества графита и толщины разделительного слоя представлены в таблице.

ЛИТИЕВЫЙ АККУМУЛЯТОР. Патент Российской Федерации RU2242825

Проведенные испытания показали, что предлагаемый состав и толщина разделительного слоя позволяют обеспечить взрывобезопасность и существенно увеличить ресурс аккумуляторов.

Приведенные примеры состава и толщины разделительного слоя в соответствии с признаками, изложенными в формуле изобретения, а и испытания аккумуляторов, собранных с использованием сепарации с нанесенным на нее разделительным слоем, подтверждают возможность практической реализации заявляемого изобретения с достижением указанного технического результата. На основании изложенного можно сделать заключение о соответствии заявляемого изобретения критерию “промышленная применимость”.

Таким образом, проведенный анализ уровня техники дает нам право утверждать, что заявляемая нами совокупность существенных признаков, изложенная в формуле изобретения, неизвестна, что отвечает одному из критериев - “новизна”.

Изучение технических решений с целью выявления существенных признаков нашего изобретения, совпадающих с признаками прототипа, показало, что заявленное нами изобретение не следует явно для специалиста в данной области из известного уровня техники. Считаем, что предлагаемое решение соответствует критерию “изобретательский уровень”.

На основании вышеизложенного считаем, что предлагаемое нами техническое решение может быть признано изобретением и защищено патентом Российской Федерации.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Li/SO2 аккумулятор, включающий анод, сепаратор, катод, электролит и разделительный слой из углеродного материала, отличающийся тем, что разделительный слой толщиной 40-60 мкмнанесен на поверхность сепаратора, обращенную к аноду, и состоит из графита - 90-95 мас.% и коллоидного раствора фторопласта 5-10 мас.% по сухому остатку.

Версия для печати
Дата публикации 05.11.2006гг


НОВЫЕ СТАТЬИ И ПУБЛИКАЦИИ НОВЫЕ СТАТЬИ И ПУБЛИКАЦИИ НОВЫЕ СТАТЬИ И ПУБЛИКАЦИИ

Технология изготовления универсальных муфт для бесварочного, безрезьбового, бесфлянцевого соединения отрезков труб в трубопроводах высокого давления (имеется видео)
Технология очистки нефти и нефтепродуктов
О возможности перемещения замкнутой механической системы за счёт внутренних сил
Свечение жидкости в тонких диэлектрических каналох
Взаимосвязь между квантовой и классической механикой
Миллиметровые волны в медицине. Новый взгляд. ММВ терапия
Магнитный двигатель
Источник тепла на базе нососных агрегатов


Created/Updated: 25.05.2018

';>